Full Content is available to subscribers

Subscribe/Learn More  >

Three-Dimensional Modeling and Model Validation of Circulating Fluidized Bed Combustion

[+] Author Affiliations
Kari Myöhänen, Timo Hyppänen, Jouni Miettinen

Foster Wheeler Energia Oy, Karhula, Finland

Riku Parkkonen

Foster Wheeler Energia Oy, Varkaus, Finland

Paper No. FBC2003-048, pp. 293-304; 12 pages
  • 17th International Conference on Fluidized Bed Combustion
  • 17th International Conference on Fluidized Bed Combustion
  • Jacksonville, Florida, USA, May 18–21, 2003
  • Conference Sponsors: Advanced Energy Systems
  • ISBN: 0-7918-3680-0 | eISBN: 0-7918-3675-4
  • Copyright © 2003 by ASME


This paper presents a three-dimensional, steady state combustion model for a circulating fluidized bed (CFB) furnace and several calculation cases which have been used for the validation of the model. The model includes essential submodels to describe the complex combustion process in a circulating fluidized bed boiler. These include the hydrodynamics of the bed, devolatilization of fuel, combustion of char, combustion of hydrocarbons, carbon monoxide and hydrogen, calcination and sulfation, fragmentation and attrition of solids, heat transfer, overall mass balance of the furnace, and three-dimensional balance equations based on the finite volume method. The code was initially developed in 1989, and it has been updated and improved over the years as new methods and new information have become available. The model is used for increasing process knowledge and for studying such phenomena inside the furnace which are often difficult or impossible to study by direct measurements. The knowledge obtained is then applied to optimize boiler design and process performance in terms of efficiency, economy and environmental issues. Reliable experiments and measurements in commercial boilers are used for the validation of the model and for tuning the model parameters. For the validation of a three-dimensional model, extensive profile measurements of the various parts of the furnace are required. This paper presents validation studies for an 80 MWth hot water boiler burning bituminous coal and for a 235 MWe subcritical boiler burning lignite. The measurements with these units included profile measurements of heat flux, pressure, temperature and gas composition under different process conditions. The model was tuned according to the measurements and used for the prediction of the heat flux profile of a large scale supercritical CFB boiler.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In