0

Full Content is available to subscribers

Subscribe/Learn More  >

Horizontal Pressure Fluctuation in Bubbling Fluidized Bed

[+] Author Affiliations
Vesa V. Wallén

Tampere University of Technology, Tampere, Finland

Paper No. FBC2003-046, pp. 287-291; 5 pages
doi:10.1115/FBC2003-046
From:
  • 17th International Conference on Fluidized Bed Combustion
  • 17th International Conference on Fluidized Bed Combustion
  • Jacksonville, Florida, USA, May 18–21, 2003
  • Conference Sponsors: Advanced Energy Systems
  • ISBN: 0-7918-3680-0 | eISBN: 0-7918-3675-4
  • Copyright © 2003 by ASME

abstract

Pressure measurements were conducted in a two-dimensional hot atmospheric bubbling fluidized bed reactor in the laboratory of Energy and Process Engineering at Tampere University of Technology. A set of six fast pressure transducers was used to detect the rapid pressure fluctuations inside the bubbling bed of the reactor. These pressure transducers were placed both vertically and horizontally into the reactor. From these measurements it was found that the vertical pressure fluctuation took place at the same time at different levels of the bed. Also the same fluctuation could be seen under the air distributor. The horizontal pressure fluctuation was found to vary both by place and time. At the bottom part of the bed the highest pressure peaks was found at centre of the bed. Most of the time there was a pressure gradient the highest pressure being in the centre of the bed. This gradient creates horizontal flow of gases from middle to the sides. The velocity of this flow varies with the size of the pressure gradient. The opposite effect can be found in the upper part of the bed. The highest pressure was no more in the middle part of the bed. Instead, it was found to be between the centre of the bed and left and right walls. The pressure was low at the walls but also rather low at the middle of the bed. There must be flow towards the walls and to the centre axis. These pressure fluctuations can provide an explanation for the well-known “wandering plume” effect. They can also give a tool to better describe the mixing inside a bubbling fluidized bed. This kind of tool is needed when biomass combustion is modelled in bubbling fluidized bed.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In