Full Content is available to subscribers

Subscribe/Learn More  >

The REBUS Experimental Programme for Burn-Up Credit

[+] Author Affiliations
Pierre D’hondt, Klaas van der Meer, Peter Baeten

SCK-CEN, Mol, Belgium

Daniel Marloye, Benoit Lance, Jacques Basselier

Belgonucleaire, Brussels, Belgium

Paper No. ICONE10-22022, pp. 227-234; 8 pages
  • 10th International Conference on Nuclear Engineering
  • 10th International Conference on Nuclear Engineering, Volume 4
  • Arlington, Virginia, USA, April 14–18, 2002
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-3598-7 | eISBN: 0-7918-3589-8
  • Copyright © 2002 by ASME


An international programme called REBUS (REactivity tests for a direct evaluation of the Burn-Up credit on Selected irradiated LWR fuel bundles) for the investigation of the burn-up credit has been initiated by the Belgian Nuclear Research Center SCK•CEN and Belgonucléaire with the support of USNRC, EdF from France, VGB, representing German nuclear utilities and NUPEC, representing the Japanese industry. The programme aims to establish a neutronic benchmark for reactor physics codes. This benchmark will qualify the codes to perform calculations of the burn-up credit. The benchmark exercise investigates the following fuel types with associated burn-up: • Reference 3.3% enriched UO2 fuel; • Fresh commercial PWR UO2 fuel; • Irradiated commercial PWR UO2 fuel (51 GWd/tM); • Fresh PWR MOX fuel; • Irradiated PWR MOX fuel (20 GWd/tM). Reactivity effects are measured in the critical facility VENUS. Fission rate and flux distributions in the experimental bundles will be determined. The accumulated burn-up of all rods is measured non-destructively in a relative way by gross gamma-scanning, while some rods are examined by gamma-spectrometry for an absolute determination of the burn-up. Some rods will be analyzed destructively with respect to accumulated burn-up, actinides content and TOP-19 fission products (i.e. those non-gaseous fission products that have most implications on the reactivity). Additionally some irradiated rods have undergone a profilometry and length determination. The experimental implementation of the programme has started in 2000 with major changes in the VENUS critical facility. Gamma scans, profilometry, length determination and gamma-spectrometry measurements on the MOX fuel have been performed. In the course of October 2001 the first fresh fuel configuration will be investigated. In the same period the commercial irradiated fuel will arrive at the SCK•CEN hot cells and will be refabricated into fuel rodlets of 1 meter length.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In