0

Full Content is available to subscribers

Subscribe/Learn More  >

Producer Gas Cleaning Techniques

[+] Author Affiliations
K. Kandassamy, E. Natarajan, S. Renganarayanan

Anna University, Chennai, Tamilnadu, India

Paper No. FBC2003-061, pp. 29-36; 8 pages
doi:10.1115/FBC2003-061
From:
  • 17th International Conference on Fluidized Bed Combustion
  • 17th International Conference on Fluidized Bed Combustion
  • Jacksonville, Florida, USA, May 18–21, 2003
  • Conference Sponsors: Advanced Energy Systems
  • ISBN: 0-7918-3680-0 | eISBN: 0-7918-3675-4
  • Copyright © 2003 by ASME

abstract

This paper reviews various producer gas cleaning techniques developed/ applied in different biomass gasification processes. It investigates various methods for the removal of particulate matter and tar emissions from producer gas generated by various types of gasifiers. The various tar measurement protocols are inconsistent on the definition of tar and particulate matters. The producer gas if used for power generation using IC engines should be less than 50 mg/Nm3 , and in the case of gas turbines a minimum particulate matter concentration of 10 ppm (weight) is needed. To control tars and particulates, various insitu (catalytic tar cracking using Dolomite/Nickel, partial oxidation, high temperature tar cracking, biomass selection, two stage gasification) and post gasification treatments (sand bed filter, wash tower, venturi scrubber, rotational atomizer, electrostatic precipitator, fabric filter, fixed bed tar adsorber, catalytic tar cracker, ceramic filter, cyclones etc) are used. In the cleaning train, collection efficiencies decrease drastically as particulate sizes fall below 1.5 μm. Heavy tar and alkali metals cause engine cylinder deposition and high temperature corrosion of turbine blades respectively. The selection of suitable biomass can improve the quality of gas. Nearly every biomass has a high percentage (60–80%) of Tar Forming Particles (PTFV). Tar is a general nomenclature for a group of compounds like phenols, Poly Aromatic Hydrocarbons (PAH), high Molecular Organic Compounds, Water-soluble organic compounds and ash particles agglomerated with organic compounds. It is easier to remove 90% particulate matter than to achieve 90% tar reduction as they form stable aerosols. A combination of insitu and post gasification treatments is necessary to condition the fuel gas for various power generating equipments. Hence, the analysis of various gas cleaning methods are important for applying them in suitable systems.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In