0

Full Content is available to subscribers

Subscribe/Learn More  >

Reinforcement Analysis of a Slab Tank

[+] Author Affiliations
Yogeshwar Hari

University of North Carolina at Charlotte, Charlotte, NC

Paper No. PVP2005-71272, pp. 343-351; 9 pages
doi:10.1115/PVP2005-71272
From:
  • ASME 2005 Pressure Vessels and Piping Conference
  • Volume 1: Codes and Standards
  • Denver, Colorado, USA, July 17–21, 2005
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4186-3 | eISBN: 0-7918-3763-7
  • Copyright © 2005 by ASME

abstract

The objective of this paper is to reduce the stresses and deflection of an existing slab tank [2]. The slab tank is to store various criticality liquids used in today’s industry. The preliminary overall dimensions of the slab tank are determined from the capacity of the stored liquids. The slab tank design is broken up into (a) two long side members, (b) two short side members, (c) top head, and (d) bottom head. The slab tank is supported from the bottom at a height by a rectangular plate enclosure. The deflection of the linear space is a critical requirement. The deflection is controlled by providing external supports from the bottom at a height by adjustable bolts. The analysis of the slab tank showed excessive stresses at the concentrated supports. The slab tank was modified by providing reinforcement on the long side members. Several reinforcement arrangements were considered. The slab tank is subjected to two conditions. First, vacuum condition, the long side plates will deflect inwards. Second, internal pressure condition the design pressure consists of working internal pressure plus static head pressure. For this the long side plates will deflect outwards. The heads are designed for internal pressure at the bottom where the pressure is the maximum. The vacuum pressure is not critical. The dimensioned slab tank is modeled using STAAD III finite element software. The slab tank showed excessive stresses. The concentrated supports were removed. The long side member was reinforced by a Channel section. The slab tank analysis was simplified by modeling a single long side member and three cases of Channel section reinforcement were considered. The reinforced arrangement was analyzed by STAAD III finite element software. Further analysis by changing the Channel section by plate reinforcement was found to be better.

Copyright © 2005 by ASME
Topics: Slabs

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In