Full Content is available to subscribers

Subscribe/Learn More  >

Development of an Automatic Electrokinetically-Controlled Microfluidic Immunoassay for the Detection of Helicobacter Pylori

[+] Author Affiliations
Yali Gao, Guoqing Hu, Dongqing Li

University of Toronto, Toronto, ON, Canada

Frank Y. H. Lin, Philip M. Sherman

Hospital for Sick Children, Toronto, ON, Canada

Paper No. ICMM2005-75148, pp. 495-502; 8 pages
  • ASME 3rd International Conference on Microchannels and Minichannels
  • ASME 3rd International Conference on Microchannels and Minichannels, Part B cont’d
  • Toronto, Ontario, Canada, June 13–15, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4185-5 | eISBN: 0-7918-3758-0
  • Copyright © 2005 by ASME


A novel automatic electrokinetically-controlled immunoassay lab-on-a-chip was developed in this paper. The microchip was made of poly(dimethylsiloxane) (PDMS)/glass using photolithography and replica molding. The immunoassay technique using anti-Helicobacter pylori antibody was applied to detect H. pylori protein antigens. Rhodamine-labeled secondary antibody was employed for signal generation. Experiments were first conducted on a straight microchannel to prove the feasibility of an electrokinetically-driven immunoassay. The detection limit for the coating antigen was found to be 1 ng/μL. Automatic electrokinetically-controlled immunoassay experiments were further carried out on a microchannel network. Numerical simulation and experimental studies were combined for the first time to demonstrate an integrated, electrokinetically-controlled immunoassay lab-on-a-chip. The electrokinetically driven, time-dependent reagent delivery processes were simulated using finite element method (FEM). Fully automatic on-chip experiments were accomplished by sequentially changing the applied electric field. It was found that the lab-on-a-chip can realize much shorter assay time, reduced reagent consumptions and automation while the detection limit is better than the conventional colorimetric immunoassay.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In