0

Full Content is available to subscribers

Subscribe/Learn More  >

A Wire Loop Design for Convection-Enhanced Dielectrophoretic Bioparticle Trapping

[+] Author Affiliations
Zachary Gagnon, Hsueh-Chia Chang

University of Notre Dame, Notre Dame, IN

Paper No. ICMM2005-75132, pp. 473-480; 8 pages
doi:10.1115/ICMM2005-75132
From:
  • ASME 3rd International Conference on Microchannels and Minichannels
  • ASME 3rd International Conference on Microchannels and Minichannels, Part B cont’d
  • Toronto, Ontario, Canada, June 13–15, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4185-5 | eISBN: 0-7918-3758-0
  • Copyright © 2005 by ASME

abstract

Tailor-designed AC electro-osmotic (AC-EO) stagnation flows are used to convect bioparticles globally from a bulk solution to localized dielectrophoretic (DEP) traps that are aligned at flow stagnation points. The multi-scale trap, with a typical trapping time of seconds for a one cc sample, is several orders of magnitude faster than conventional DEP traps and earlier AC-EO traps with disjoint electrodes. A novel serpentine wire resistor loop capable of sustaining a high field, up to 20,000 V/cm, is fabricated to produce strong AC electro-osmotic flow with two separated stagnation lines, one aligned with the field minimum and one with the field maximum. The continuous loop design allows a large applied voltage without inducing Faradaic electrode reactions. Particles are trapped within seconds at one of the traps depending on whether they suffer negative or positive DEP (n-DEP, p-DEP). The particles can also be rapidly released from their respective traps (and recaptured in the opposite traps) by varying the frequency of the applied AC field below particle-distinct cross-over frequencies. Zwitter ion addition to the buffer allows further geometric and frequency alignments of the AC-EO and DEP motions. The same device hence allows fast trapping, detection sorting and characterization of a sample with realistic conductivity, volume and bacteria count.

Copyright © 2005 by ASME
Topics: Wire , Convection , Design

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In