0

Full Content is available to subscribers

Subscribe/Learn More  >

Electrokinetic Concentration Gradient Generation Using a Converging-Diverging Microchannel

[+] Author Affiliations
Jacky S. H. Lee, Yandong Hu, Dongqing Li

University of Toronto, Toronto, ON, Canada

Paper No. ICMM2005-75116, pp. 457-464; 8 pages
doi:10.1115/ICMM2005-75116
From:
  • ASME 3rd International Conference on Microchannels and Minichannels
  • ASME 3rd International Conference on Microchannels and Minichannels, Part B cont’d
  • Toronto, Ontario, Canada, June 13–15, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4185-5 | eISBN: 0-7918-3758-0
  • Copyright © 2005 by ASME

abstract

Creation of concentration gradients is important in the study of biological and chemical processes that are sensitive to concentration variations. This paper presents a simple method to generate a linear concentration gradient in electroosmotic flow in microchannels with converging and diverging geometries. The method is based on the enhanced diffusive mixing inside the microchannel. By varying the converging-diverging geometries, the degree of diffusive mixing can be controlled. Different concentration gradients can be obtained by varying the applied potential and the geometry. Concentration profiles with minimal axial variations can be achieved with a deviation of 7% and 3% over a channel length of 3mm and 1mm, respectively, for a 400μm wide microchannel. Although the underlying physics and mechanisms for creating concentration profiles in a converging-diverging microchannel are the same as a T-shaped micromixer, the converging-diverging microchannel can produce desired concentration profiles in a much shorter distance (shorter by a factor of 2∼3.5 compared to a T-shape mixer). A serially connected concentration gradient generator is also realized with the ability to generate two concentration gradient ranges in the same microchannel. Numerical simulations and experiments were carried out to investigate the factors contributed to the generation of the concentration gradients.

Copyright © 2005 by ASME
Topics: Microchannels

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In