Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Design of Microchannel Heat Sinks for Low-Orbit Micro-Satellites

[+] Author Affiliations
Amaury J. H. Heresztyn, Nicole C. DeJong Okamoto

San Jose State University, San Jose, CA

Paper No. ICMM2005-75045, pp. 159-165; 7 pages
  • ASME 3rd International Conference on Microchannels and Minichannels
  • ASME 3rd International Conference on Microchannels and Minichannels, Part B cont’d
  • Toronto, Ontario, Canada, June 13–15, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4185-5 | eISBN: 0-7918-3758-0
  • Copyright © 2005 by ASME


As reduction in the size of electronics creates demand for smaller, less expensive and faster-to-produce spacecraft, the use of high heat flux electronics or advanced nuclear propulsion systems will increase the stress on the thermal subsystem. This work presents a thermal management solution to this problem using liquid-cooled microchannel heat sinks. First, a simple computer model is used to illustrate the need for an atypical cooling method when high-heat flux electronics are used. Second, a thermal/fluid model of microchannel heat sinks is developed and applied to address the satellite thermal need. The total thermal resistances and pressure drops show excellent comparison with published experimental and analytical results. Finally, the model of the microchannel heat sink is optimized to remove 25 W/cm2 over a footprint of 3.7cm2 . The mass flow rate needed was significantly lower (almost 5–10 times lower) when compared to other published results, which means that micro-pumps available on the market will be sufficient. The integration of the microchannel system with the satellite is also discussed.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In