Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Dissolved Air on Subcooled Flow Boiling of a Dielectric Coolant in a Microchannel Heat Sink

[+] Author Affiliations
Tailian Chen, Suresh V. Garimella

Purdue University, West Lafayette, IN

Paper No. ICMM2005-75157, pp. 89-96; 8 pages
  • ASME 3rd International Conference on Microchannels and Minichannels
  • ASME 3rd International Conference on Microchannels and Minichannels, Part B cont’d
  • Toronto, Ontario, Canada, June 13–15, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4185-5 | eISBN: 0-7918-3758-0
  • Copyright © 2005 by ASME


The effects of dissolved air in the dielectric liquid FC-77 on flow boiling in a microchannel heat sink containing 10 parallel channels, each 500 μm wide and 2.5 mm deep, were experimentally investigated. Experiments were conducted before and after degassing, at three flow rates in the range of 30 to 50 ml/min. The dissolved air resulted in a significant reduction in wall temperature at which bubbles were first observed in the microchannels. Analysis of the results suggests that the bubbles observed initially in the undegassed liquid were most likely air bubbles. Once the boiling process is initiated, the wall temperature continues to increase for the undegassed liquid, while it remains relatively unchanged in the case of the degassed liquid. Prior to the inception of boiling in the degassed liquid, the heat transfer coefficients with the undegassed liquid were 300–500% higher than for degassed liquid, depending on the flow rate. The heat transfer coefficients for both cases reach similar values at high heat fluxes (over 120 kW/m2 ) once the boiling process with the degassed liquid was well established. The boiling process induced a significant increase in pressure drop relative to single-phase flow; the pressure drop for undegassed liquid was measured to be higher than for degassed liquid once the boiling process became well established in both cases. Flow instabilities were induced by the boiling process, and the magnitude of the instability was quantified using the standard deviation of the measured pressure drop at a given heat flux. It was found that the magnitude of flow instability increased with increasing heat flux in both the undegassed and degassed liquids, with greater flow instability noted in the undegassed liquid.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In