Full Content is available to subscribers

Subscribe/Learn More  >

Boiling Enhancement in a Mini-Channel of a Three-Phase Circulating Fluidised Bed

[+] Author Affiliations
Michael Arumemi-Ikhide, Khellil Sefiane

University of Edinburgh, Edinburgh, UK

Paper No. ICMM2005-75144, pp. 81-88; 8 pages
  • ASME 3rd International Conference on Microchannels and Minichannels
  • ASME 3rd International Conference on Microchannels and Minichannels, Part B cont’d
  • Toronto, Ontario, Canada, June 13–15, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4185-5 | eISBN: 0-7918-3758-0
  • Copyright © 2005 by ASME


In fouling, the accumulation of poorly conducting materials on the surface of process equipment, results in an increased resistance to heat transfer and hence reduces heat exchanger effectiveness. Under most conditions fouling is more severe during boiling heat transfer, due to the mechanisms of bubble formation and detachment. Thus, in order to enhance heat transfer and mitigate fouling in boiling processes, a new type of vapour-liquid-solid (three-phase) circulating fluidised bed boiling system has been designed, combining circulating fluidised bed technology with boiling heat transfer. Experiments are conducted in a glass mini-channel of square cross sectional area 21.5 mm × 11mm, height 1000mm, and fitted with an electrically heated cartridge heater rod of 8mm diameter × 730mm length. The set-up uses stainless steel balls to investigate the effect of particle properties (specifically particle size) on three-phase boiling heat transfer enhancement. Experimental results show that overall, compared with two-phase flow boiling, the presence of solid particles in the three-phase boiling system augments the heat transfer coefficient. Results are presented and discussed.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In