0

Full Content is available to subscribers

Subscribe/Learn More  >

Three-Dimensional Large-Scale Bubbly Flow Analysis in a Vertical Minichannel

[+] Author Affiliations
Kazuyuki Takase

Japan Atomic Energy Research Institute, Tokai, Ibaraki, Japan

Paper No. ICMM2005-75030, pp. 553-560; 8 pages
doi:10.1115/ICMM2005-75030
From:
  • ASME 3rd International Conference on Microchannels and Minichannels
  • ASME 3rd International Conference on Microchannels and Minichannels, Parts A and B
  • Toronto, Ontario, Canada, June 13–15, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4185-5 | eISBN: 0-7918-3758-0
  • Copyright © 2005 by ASME

abstract

In light water reactors each fuel rod is arranged in the shape of a square lattice with an interval of around 3 mm. Several spacers are installed on the surface of the fuel rod with arbitrary axial positions. Water flows vertically along fuel rods and is heated by those, and then many bubbles generate. In order to improve the thermal design procedure of the nuclear reactor core, it is needed to clarify velocity, pressure, temperature and void fraction distributions precisely based on the bubbly flow behavior in a vertical minichannel under the water-vapor two-phase flow condition. However, it is not easy to get those three-dimensional distributions by the experimental study. Then, large-scale two-phase flow simulations were performed to predict the three-dimensional bubby flow configurations in the simply simulated nuclear coolant channel. Regarding both mechanisms of the coalescence and fragmentation of bubbles the useful knowledge was obtained.

Copyright © 2005 by ASME
Topics: Bubbly flow

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In