0

Full Content is available to subscribers

Subscribe/Learn More  >

Lattice Boltzmann Model for Flow and Heat Transfer of Nanofluids in a Microchannel

[+] Author Affiliations
Xuan Wu, Ranganathan Kumar

University of Central Florida, Orlando, FL

Paper No. ICMM2005-75223, pp. 537-543; 7 pages
doi:10.1115/ICMM2005-75223
From:
  • ASME 3rd International Conference on Microchannels and Minichannels
  • ASME 3rd International Conference on Microchannels and Minichannels, Parts A and B
  • Toronto, Ontario, Canada, June 13–15, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4185-5 | eISBN: 0-7918-3758-0
  • Copyright © 2005 by ASME

abstract

A thermal lattice Boltzmann model for investigating the flow and heat transfer process of the mixtures of the pure liquid and nanoparticles (nanofluids) in the microchannel has been developed. The external and internal forces, such as buoyancy, gravity, drag and Brownian force, and the mechanical and thermal interactions among the nanoparticles and their impact on the equilibrium velocity have been introduced. Along with a Gauss white noise model for Brownian motion, the double-distribution-function (DDF) approach is used to derive the velocities and temperatures of nanofluids in a microchannel. Some numerical computations of this model have been performed and several results have been provided in this paper. It has been found that the temperature distribution of the nanofluids in the microchannel is quite different from that of pure water flowing through a channel. Due to the random motion of the suspended nanoparticles under the action of various forces, the temperature distribution of the nanofluids seems to be irregular and the temperature distribution in the vertical direction becomes flatter compared to that for pure water in a channel. The distribution morphology and the volume fraction of the nanoparticles play a vital role in enhancing the heat transfer of the nanofluids. Numerical results also demonstrate that the distribution of the suspended nanoparticles leads to a fluctuation of the Nusselt number of the nanofluids in the direction of the main flow. Nusselt number also increases with an increase in the inlet Reynolds number.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In