Full Content is available to subscribers

Subscribe/Learn More  >

Enhanced Boiling Heat Transfer in Second Generation Microchannels: Part B — Sub-Atmospheric Results

[+] Author Affiliations
Ali Kosar, Chih-Jung Kuo, Yoav Peles, Michael K. Jensen

Rensselaer Polytechnic Institute, Troy, NY

Paper No. ICMM2005-75196, pp. 529-536; 8 pages
  • ASME 3rd International Conference on Microchannels and Minichannels
  • ASME 3rd International Conference on Microchannels and Minichannels, Parts A and B
  • Toronto, Ontario, Canada, June 13–15, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4185-5 | eISBN: 0-7918-3758-0
  • Copyright © 2005 by ASME


Boiling flow of de-ionized water through 227 μm hydraulic diameter microchannels with 7.5 μm wide interconnected reentrant cavities at 47 kPa exit pressure has been investigated. Average two-phase heat transfer coefficients have been obtained over effective heat fluxes ranging from 28 to 445 W/cm2 and mass fluxes from 41 to 302 kg/m2 s. A map is developed that divides the data into two regions where the heat transfer mechanisms are nucleation or convective boiling dominant. The map is compared to similar atmospheric exit pressure data developed in a previous study. A boiling mechanism transition criterion based on the Reynolds number and the Kandlikar k1 number is proposed.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In