Full Content is available to subscribers

Subscribe/Learn More  >

Kinetic Modeling of Temperature Driven Flows in Short Microchannels

[+] Author Affiliations
Alina A. Alexeenko, Sergey F. Gimelshein, E. Phil Muntz

University of Southern California, Los Angeles, CA

Andrew D. Ketsdever

Air Force Research Laboratory, Edwards AFB, CA

Paper No. ICMM2005-75247, pp. 483-491; 9 pages
  • ASME 3rd International Conference on Microchannels and Minichannels
  • ASME 3rd International Conference on Microchannels and Minichannels, Parts A and B
  • Toronto, Ontario, Canada, June 13–15, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4185-5 | eISBN: 0-7918-3758-0
  • Copyright © 2005 by ASME


The temperature driven gas flow in a two-dimensional finite length microchannel and a cylindrical tube are studied numerically with the goal of performance optimization of a nanomembrane-based Knudsen compressor. The numerical solutions are obtained using direct simulation Monte Carlo method and discrete ordinate method for BGK model kinetic equation in a wide range of Knudsen numbers from 0.05 to 50. The length-to-height ratios from 5 to 30 were examined. Three different wall temperature distributions were considered, namely, linear, stepwise, and a non-monotonic profile typical for a radiantly heated Knudsen compressor membrane. The short channel end effects are characterized, and the sensitivity of the mass flow rate to a non-monotonic temperature distribution is shown.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In