0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of Heat Transfer in Square and Circular Minichannel Air Flow for Wide Range of Pressure Ratio

[+] Author Affiliations
Kazuo Hara, Masato Furukawa, Naoki Akihiro

Kyushu University, Fukuoka, Japan

Paper No. ICMM2005-75184, pp. 381-388; 8 pages
doi:10.1115/ICMM2005-75184
From:
  • ASME 3rd International Conference on Microchannels and Minichannels
  • ASME 3rd International Conference on Microchannels and Minichannels, Parts A and B
  • Toronto, Ontario, Canada, June 13–15, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4185-5 | eISBN: 0-7918-3758-0
  • Copyright © 2005 by ASME

abstract

This paper investigates the heat transfer of airflow in square and circular minichannels. The square channels were machined on the oxygen free copper blocks. The width of them were 0.3, 0.6, 1.0 and 2.0 mm, and the lengths were 10, 20, 50 and 100 mm. The circular channels were drilled in oxygen free copper disks. The diameters of them were 1.0, 1.27, 2.0 and 2.8 mm and the length to diameter ratios were 5 and 10. The mean heat transfer coefficient included the transfered heat upstream of the channel inlet cross-section, since the inlet was not thermally insulated. The pressure ratio of the inlet and outlet plenum was increased up to the flow choked at the channel exit. The square channel showed 7.3 times greater mean heat transfer coefficient than fully developed turbulent pipe flow for width of 2 mm and length of 10 mm channel. The so-called tube cutting method was employed to investigate the sectional heat transfer rate of the square channel. About 75 percent of the total heat transfer was completed in 10 percent inlet portion of the channel. The Stanton number was found to be principally the function of length to diameter ratio. The circular channel showed 6.79 times greater mean heat transfer coefficient than fully developed turbulent pipe flow for diameter of 1.27 mm and length of 6.35 mm channel. The heat transfer coefficient increased as the channel size (width or diameter) became smaller for constant length to diameter ratio. It implied that the result of high heat transfer coefficient had a possibility to be limited to the minichannel. Heat transfer of gas turbine film cooling hole has a possibility to be larger than ever thought.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In