0

Full Content is available to subscribers

Subscribe/Learn More  >

Measurement of Near-Wall Liquid Temperatures in Single-Phase Flows Through Silicon Microchannels

[+] Author Affiliations
Vishal A. Patil, Vinod Narayanan

Oregon State University, Corvallis, OR

Paper No. ICMM2005-75212, pp. 343-349; 7 pages
doi:10.1115/ICMM2005-75212
From:
  • ASME 3rd International Conference on Microchannels and Minichannels
  • ASME 3rd International Conference on Microchannels and Minichannels, Parts A and B
  • Toronto, Ontario, Canada, June 13–15, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4185-5 | eISBN: 0-7918-3758-0
  • Copyright © 2005 by ASME

abstract

A technique for quantitative temperature visualization of single-phase liquid flows in silicon (Si) microchannels using infrared thermography is presented. This technique offers a new way to measure, non-intrusively, local variations in wall temperature, or fluid temperature at the fluid-wall interface, in a microchannel fabricated entirely of silicon. The experimental setup and measurement procedure required to obtain a high desired signal-to-noise ratio is elaborated. A single 13-mm long and 50 μm wide by 135 μm deep Si microchannel is used in this study. Experiments were performed with a constant electrical heat input to the heat sink surface for four fluid flow rates between 0.6 g/min and 1.2 g/min, corresponding to a Reynolds number range from 200 to 300. Temperature profiles of water in contact with the visualized wall of the microchannel indicate a monotonically increasing trend from the channel inlet for all cases, which is expected of a hydrodynamically and thermally developing flow. The estimated experimental fully developed Nusselt number matches the solution provided in literature for laminar flows. Measurements of the heat sink surface temperature are performed to determine axial variation in heat flux to the visualized channel wall. Results indicate that axial non-uniformity can be significant for the larger Peclet number flows.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In