Full Content is available to subscribers

Subscribe/Learn More  >

Pressure Drop of Fully-Developed, Laminar Flow in Microchannels of Arbitrary Cross-Section

[+] Author Affiliations
M. Bahrami, M. M. Yovanovich, J. R. Culham

University of Waterloo, Waterloo, ON, Canada

Paper No. ICMM2005-75109, pp. 269-280; 12 pages
  • ASME 3rd International Conference on Microchannels and Minichannels
  • ASME 3rd International Conference on Microchannels and Minichannels, Parts A and B
  • Toronto, Ontario, Canada, June 13–15, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4185-5 | eISBN: 0-7918-3758-0
  • Copyright © 2005 by ASME


Pressure drop of fully developed, laminar, incompressible flow in smooth mini and microchannels of arbitrary cross-section is investigated. A compact approximate model is proposed that predicts the pressure drop for a wide variety of shapes. The model is only a function of geometrical parameters of the cross-section, i.e., area, perimeter, and polar moment of inertia. The proposed model is compared with analytical and numerical solutions for several shapes. Also, the comparison of the model with experimental data, collected by several researchers, shows good agreement.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In