0

Full Content is available to subscribers

Subscribe/Learn More  >

Local Heat Transfer Measurements in Micro Geometries Using Liquid Crystal Thermography

[+] Author Affiliations
Roland S. Muwanga, Ibrahim G. Hassan

Concordia University, Montreal, QC, Canada

Paper No. ICMM2005-75019, pp. 217-224; 8 pages
doi:10.1115/ICMM2005-75019
From:
  • ASME 3rd International Conference on Microchannels and Minichannels
  • ASME 3rd International Conference on Microchannels and Minichannels, Parts A and B
  • Toronto, Ontario, Canada, June 13–15, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4185-5 | eISBN: 0-7918-3758-0
  • Copyright © 2005 by ASME

abstract

A technique is described on the use of un-encapsulated thermochromic liquid crystals (TLC’s) to measure the local heat transfer coefficient in microchannel geometries. Microchannel heat transfer is at the heart of the microchannel heat sink, a recent technology aimed at managing the stringent thermal requirements of today’s high-end electronics. The microencapsulated form of liquid crystals are well established for use in surface temperature mapping. Limited studies however are available on the use of the un-encapsulated form. This form is advantageous as it offers the potential for high spatial resolution which is necessary for micro geometries. The evaluation of this method and its associated difficulties is therefore the motivation for the experimental facility developed and described in the present work. Measurements are made in a closed loop facility combined with a microscopic imaging system and automated data acquisition. Results are presented for a circular tube made of stainless steel with an inner diameter of 1.0668mm. A localized TLC calibration is used to account for non-uniformities in the coating and variation of lighting conditions. Results for single-phase, thermally developing, laminar and turbulent flows using distilled water are presented. The results show that the correlations for conventional size channels are adequate for predicting the heat transfer characteristics of a nominally sized 1 mm channel.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In