0

Full Content is available to subscribers

Subscribe/Learn More  >

Passive Safety Features in Sodium Cooled Super-Safe, Small and Simple Reactor

[+] Author Affiliations
N. Ueda, I. Kinoshita, Y. Nishi, A. Minato

Central Research Institute of Electric Power Industry, Komae, Tokyo, Japan

H. Matsumiya, Y. Nishiguchi

Toshiba Corporation, Yokohama, Japan

Paper No. ICONE10-22354, pp. 741-748; 8 pages
doi:10.1115/ICONE10-22354
From:
  • 10th International Conference on Nuclear Engineering
  • 10th International Conference on Nuclear Engineering, Volume 2
  • Arlington, Virginia, USA, April 14–18, 2002
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-3596-0 | eISBN: 0-7918-3589-8
  • Copyright © 2002 by ASME

abstract

This paper describes the passive safety features utilized in the updated sodium cooled Super-Safe, Small and Simple fast reactor, which is the improved 4S reactor. This reactor can operate up to ten years without refueling and neutron reflector regulates the reactivity. One of the design requirements is to secure the core against all anticipated transients without reactor scram. Therefore, the reactor concept is to design to enhance the passive safety features. All temperature reactivity feedback coefficients including whole core sodium void worth are negative. Also, introducing of RVACS (Reactor Vessel Auxiliary Cooling System) can enhance the passive decay heat removal capability. Safety analyses are carried out to simulate various transient sequences, which are loss of flow events, transient overpower events and loss of heat sink events, in order to evaluate the passive safety capabilities. A calculation tool for plant dynamics analyses for fast reactors has been modified to model the 4S including the unique plant system, which are reflector control system, circulation pumps and RVACS. The analytical results predict that the designed passive features improve the safety in which temperature variation in transients are satisfied with the safety criteria for the fuel element and the structure of the primary coolant boundary.

Copyright © 2002 by ASME
Topics: Safety , Sodium

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In