Full Content is available to subscribers

Subscribe/Learn More  >

Optimization of Radial Convective Radiating Fin Geometry for Single Cylinder Internal Combustion Engine (ICE): Entropy Generation Minimization

[+] Author Affiliations
B. N. Taufiq, T. M. I. Mahlia, H. H. Masjuki, M. S. Faizul, E. Niza Mohamad

University of Malaya, Kuala Lumpur, Malaysia

Paper No. ICES2005-1052, pp. 405-413; 9 pages
  • ASME 2005 Internal Combustion Engine Division Spring Technical Conference
  • ASME 2005 Internal Combustion Engine Division Spring Technical Conference
  • Chicago, Illinois, USA, April 5–7, 2005
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 0-7918-4184-7 | eISBN: 0-7918-3753-X
  • Copyright © 2005 by ASME


This study attempts to calculate the optimal geometry of convective-radiating radial of ICEs fin arrays using entropy generation method. The analysis is conducted to achieve the balance between entropy generation due to heat transfer and entropy generation due to fluid friction. In designing of the thermal system, it is important to minimize thermal irreversibilities, because the optimal geometry found while the entropy generation rate is minimized. In this study, the entropy generation minimization (EGM) technique based on fin thickness is applied to study the thermodynamic irreversibility caused by heat transfer and fluid irreversibility in radiating convective radial fin arrays. In addition, the cost parameters of fin optimum thickness is also considered and presented. The entropy generation is found to be strongly influenced by emissivity of fin material surface and increasing the cross flow fluid velocity will enhance the heat transfer rate that will reduce the heat transfer irreversibility.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In