0

Full Content is available to subscribers

Subscribe/Learn More  >

CFD Modeling of the Performance of a Prechamber for Use in a Large Bore Natural Gas Engine

[+] Author Affiliations
Allan Kirkpatrick, Gi-Heon Kim, Daniel Olsen

Colorado State University, Fort Collins, CO

Paper No. ICES2005-1049, pp. 397-403; 7 pages
doi:10.1115/ICES2005-1049
From:
  • ASME 2005 Internal Combustion Engine Division Spring Technical Conference
  • ASME 2005 Internal Combustion Engine Division Spring Technical Conference
  • Chicago, Illinois, USA, April 5–7, 2005
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 0-7918-4184-7 | eISBN: 0-7918-3753-X
  • Copyright © 2005 by ASME

abstract

The topic of this paper is the performance of a prechamber for use in a large bore two stroke natural gas engine. With increased regulation of emissions from stationary natural gas engines, there has been interest in modification of the combustion process, such as extending the lean limit, to reduce NOx emissions. One promising combustion technique uses an ignition prechamber. CFD models of a prechamber and the cylinder were developed in order to simulate the performance of a prechamber ignition system. The modeling included a full three dimensional transient analysis with scavenging, moving piston, and main chamber fuel injection. The CFD analysis included the fuel injection into the prechamber, pressurization by the inflowing main chamber gases, spark ignition, combustion, and flame propagation into the main combustion chamber. The computations indicated that the prechamber is more well mixed than the main engine chamber, with the prechamber mixture close to stoichiometric for better ignition. There is a strong, well-organized vortex in the prechamber induced by the incoming jet from the main chamber. The combustion flame in the prechamber travels in the direction of the gas vortex along lines of increasing equivalence ratio. The flame then propagates across the main cylinder in a very uniform fashion, indicating that there is sufficient energy to ignite the lean, partially mixed mixture in the main chamber. The orientation of the prechamber nozzle was also investigated, and an orientation of twenty degrees relative to the main chamber was found to produce a flame that did not impinge on the piston.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In