0

Full Content is available to subscribers

Subscribe/Learn More  >

Uncertainty Characterization of Reactor Vessel Fracture Toughness

[+] Author Affiliations
Fei Li, Mohammad Modarres

University of Maryland, College Park, MD

Paper No. ICONE10-22647, pp. 423-429; 7 pages
doi:10.1115/ICONE10-22647
From:
  • 10th International Conference on Nuclear Engineering
  • 10th International Conference on Nuclear Engineering, Volume 2
  • Arlington, Virginia, USA, April 14–18, 2002
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-3596-0 | eISBN: 0-7918-3589-8
  • Copyright © 2002 by ASME

abstract

To perform fracture mechanics analysis of reactor vessel, fracture toughness (KIc ) at various temperatures would be necessary. In a best estimate approach, KIc uncertainties resulting from both lack of sufficient knowledge and randomness in some of the variables of KIc must be characterized. Although it may be argued that there is only one type of uncertainty, which is lack of perfect knowledge about the subject under study, as a matter of practice KIc uncertainties can be divided into two types: aleatory and epistemic. Aleatory uncertainty is related to uncertainty that is very difficult to reduce, if not impossible; epistemic uncertainty, on the other hand, can be practically reduced. Distinction between aleatory and epistemic uncertainties facilitates decision-making under uncertainty and allows for proper propagation of uncertainties in the computation process. Typically, epistemic uncertainties representing, for example, parameters of a model are sampled (to generate a “snapshot,” single-value of the parameters), but the totality of aleatory uncertainties is carried through the calculation as available. In this paper a description of an approach to account for these two types of uncertainties associated with KIc has been provided.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In