0

Full Content is available to subscribers

Subscribe/Learn More  >

The Influence of Seasonal Characteristics on the Accident Consequence Analysis

[+] Author Affiliations
Jongtae Jeong, Wondea Jung

Korea Atomic Energy Research Institute, Daejon, Korea

Paper No. ICONE10-22384, pp. 237-243; 7 pages
doi:10.1115/ICONE10-22384
From:
  • 10th International Conference on Nuclear Engineering
  • 10th International Conference on Nuclear Engineering, Volume 2
  • Arlington, Virginia, USA, April 14–18, 2002
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-3596-0 | eISBN: 0-7918-3589-8
  • Copyright © 2002 by ASME

abstract

In order to examine the influence of seasonal characteristics on accident consequences, we defined a limited number of basic spectra based on the relative importance of source term release parameters and meteorological conditions on offsite health effects and economic impacts. We then investigated the variation in numbers and frequency of early health effects and economic impacts resulting from the severe accidents of the YGN 3&4 nuclear power plants from spectrum to spectrum by using MACCS code. These investigations were for meteorological conditions defined as typical on an annual basis. Also, we investigated the variation in numbers and frequency of early health effects and economic impacts for the same standard spectra for meteorological conditions defined as typical on a seasonal basis recognizing that there are four seasons with distinct meteorological characteristics. Results show that there are large differences in consequences from spectrum to spectrum, although an equal amount and mix of radioactive material is released to the atmosphere in each case. Therefore, release parameters and meteorological data have to be well characterized in order to estimate accident consequences resulting from an accident accurately. Also, there are large differences in the estimated number of health effects and economic impacts from season to season due to distinct seasonal variations in meteorological conditions in Korea. In fall, the early fatalities and early fatality risk show minimum values due to enhanced dispersion arising from increased atmospheric instability, and the early fatalities show maximum value in summer due to a large rainfall rate. On the contrast, the economic cost shows maximum value in fall and minimum in summer due to different atmospheric dispersion and rainfall rate. Therefore, it is necessary to consider seasonal characteristics in developing emergency response strategies for reducing offsite early health risks in the event of a severe accident.

Copyright © 2002 by ASME
Topics: Accidents

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In