0

Full Content is available to subscribers

Subscribe/Learn More  >

Severe Accident Improvements for CAREM-25 to Arrest Reactor Vessel Meltdown Sequences

[+] Author Affiliations
L. E. Pomier Báez, J. E. Nuñez Mac Leod, J. H. Barón

Cuyo National University, Mendoza, Argentina

Paper No. ICONE10-22304, pp. 195-206; 12 pages
doi:10.1115/ICONE10-22304
From:
  • 10th International Conference on Nuclear Engineering
  • 10th International Conference on Nuclear Engineering, Volume 2
  • Arlington, Virginia, USA, April 14–18, 2002
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-3596-0 | eISBN: 0-7918-3589-8
  • Copyright © 2002 by ASME

abstract

Advanced nuclear reactor designs, such as the CAREM reactor, include several improvements related to safety issues either enhancing the passive safety functions or allowing plant operators more time to undertake different management actions against radioactive releases to the environment. In the development of the nuclear power plant CAREM, the possibility of including a passive metallic in-vessel container in its design is being considered, to arrest the reactor pressure vessel meltdown sequence during a core damaging event, and thereof prevent its failure. The paper comprises the analyses, via numerical simulation, for the conceptual design of such a container type. Simulation model characteristics helping to establish geometrical dimensions, materials and container compatibility with power plant engineering features is addressed. The paper also presents the first model developed to analyze the complex relocation phenomena in the core of CAREM during a severe accident sequence caused by a loss of coolant. The PC version of MELCOR 1.8.4 code has been used to predict the transient behavior of core parameters. The finite element analysis (FEA) system ALGOR has been used to evaluate the thermal regime of the reactor pressure vessel wall, when the in-vessel metallic core catcher is present and when it is not present. Two different scenarios have been considered for heat transfer outside the reactor vessel, a pessimistic (dry) and optimistic (wet) conditions in the reactor cavity. This paper presents reactor variables behavior during the first hours of the event being studied, giving preliminary conclusions about the use and capability of a metallic in-vessel core catcher.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In