Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Piping Systems for Life Extension of Heavy Water Plants in India

[+] Author Affiliations
Rajesh K. Mishra, R. S. Soni, H. S. Kushwaha, V. Venkat Raj

Bhabha Atomic Research Centre, Mumbai, India

Paper No. ICONE10-22516, pp. 875-881; 7 pages
  • 10th International Conference on Nuclear Engineering
  • 10th International Conference on Nuclear Engineering, Volume 1
  • Arlington, Virginia, USA, April 14–18, 2002
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-3595-2 | eISBN: 0-7918-3589-8
  • Copyright © 2002 by ASME


Heavy water production in India has achieved many milestones in the past. Two of the successfully running heavy water plants are on the verge of completion of their design life in the near future. One of these two plants, situated at Kota, is a hydrogen sulfide based plant and the other one at Tuticorin is an ammonia-based plant. Various exercises have been planned with an aim to assess the fatigue usage for the various components of these plants in order to extend their life. Considering the process parameters and the past history of the plant performance, critical piping systems and equipment are identified. Analyses have been carried out for these critical piping systems for mainly two kinds of loading, viz. sustained loads and the expansion loads. Static analysis has been carried out to find the induced stress levels due to sustained as well as thermal expansion loading as per the design code ANSI B31.3. Due consideration has been given to the design corrosion allowance while evaluating the stresses due to sustained loads. At the locations where the induced stresses (SL ) due to the sustained loads are exceeding the allowable limits (Sh ), exercises have been carried out considering the reduced corrosion allowance value. This strategy is adopted in view of the fact that the thickness measurements carried out at site at various critical locations show a very low rate of corrosion. It has been possible to qualify the system with reduced corrosion allowance values however, it is recommended to keep that location under periodic monitoring. The strategy adopted for carrying out analysis for thermal expansion loading is to qualify the system as per the code allowable value (Sa ). If the stresses are more than the allowable value, credit of liberal allowable value as suggested in the code i.e., with the addition of the term (Sh -SL ) to the term 0.25 Sh , has been taken. However, if at any location, it is found that thermal stress is high, fatigue analysis has been carried out. This is done using the provisions of ASME Code Section VIII, Div. 2 by evaluating the cumulative fatigue usage factor. Results of these exercises reveal that the piping systems of both of these plants are in a very healthy state. Based on these exercises, it has been concluded that the life of the plants can be safely extended further with enhanced in-service inspection provisions.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In