0

Full Content is available to subscribers

Subscribe/Learn More  >

Large-Scale Parallel Finite Element Analysis of the Stress Singular Problems

[+] Author Affiliations
Noriyuki Kushida, Hiroshi Okuda, Genki Yagawa

University of Tokyo, Tokyo, Japan

Paper No. ICONE10-22562, pp. 735-740; 6 pages
doi:10.1115/ICONE10-22562
From:
  • 10th International Conference on Nuclear Engineering
  • 10th International Conference on Nuclear Engineering, Volume 1
  • Arlington, Virginia, USA, April 14–18, 2002
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-3595-2 | eISBN: 0-7918-3589-8
  • Copyright © 2002 by ASME

abstract

In this paper, the convergence behavior of large-scale parallel finite element method for the stress singular problems was investigated. The convergence behavior of iterative solvers depends on the efficiency of the preconditioners. However, efficiency of preconditioners may be influenced by the domain decomposition that is necessary for parallel FEM. In this study the following results were obtained: Conjugate gradient method without preconditioning and the diagonal scaling preconditioned conjugate gradient method were not influenced by the domain decomposition as expected. symmetric successive over relaxation method preconditioned conjugate gradient method converged 6% faster as maximum if the stress singular area was contained in one sub-domain.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In