0

Full Content is available to subscribers

Subscribe/Learn More  >

Techno-Economic Challenges for PEMFCs and DMFCs Entering Energy Sector

[+] Author Affiliations
S. Srinivasan, R. Dillon, L. Krishnan, A. B. Bocarsly

Princeton University, Princeton, NJ

A. S. Arico, V. Antonucci

Institute CNR-ITAE, S. Lucia, Messina, Italy

W. J. Lee, K.-L. Hsueh, C.-C. Lai, A. Peng

Industrial Technology Research Institute, Hsinchu, Taiwan, R.O.C.

Paper No. FUELCELL2003-1764, pp. 529-536; 8 pages
doi:10.1115/FUELCELL2003-1764
From:
  • ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology
  • 1st International Fuel Cell Science, Engineering and Technology Conference
  • Rochester, New York, USA, April 21–23, 2003
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-3668-1
  • Copyright © 2003 by ASME

abstract

Proton Exchange Membrane Fuel Cells (PEMFC) and Direct Methanol Fuel Cells (DMFC) have been in the forefront of all fuel cell technologies for transportation and portable power applications. This is mainly because of the quantum/semi-quantum jumps in these technologies. However, there are several techno-economic challenges for these types of fuel cells to enter the energy sector. The cell structures and operating principles of PEMFC and DMFC are similar to each other. However, techno-economic challenges for PEMFCs are significantly different from those for DMFCs, due to their applications, associated competing technologies, global market, and manufacturing environment. Both types of fuel cell are close to entering the energy sector now, more than ever before. Significant reduction of PEMFCs capital cost and miniaturization of DMFCs are two critical issues. Intense research and development efforts are needed with respect to (i) finding better and less expensive electrocatalysts and proton conducting membranes (ii) optimization of structure and composition of membrane and electrode assemblies, (iii) automation of techniques to fabricate cell and stack components, and (iv) finding efficient and cost effective methods for thermal and water management.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In