Full Content is available to subscribers

Subscribe/Learn More  >

A Study on the Embedment Effect in the Soil-Structure Interaction Analysis of the APR1400

[+] Author Affiliations
Young-Sun Jang

Korea Power Engineering Company, Inc., Kyonggi, Korea

Kwang-Ho Joo, Chong-Hak Kim

Korea Hydro and Nuclear Power, Daejeon, Korea

Paper No. ICONE10-22328, pp. 617-623; 7 pages
  • 10th International Conference on Nuclear Engineering
  • 10th International Conference on Nuclear Engineering, Volume 1
  • Arlington, Virginia, USA, April 14–18, 2002
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-3595-2 | eISBN: 0-7918-3589-8
  • Copyright © 2002 by ASME


The SSI (Soil-Structure Interaction) analyses are being performed for the APR1400 (Advanced Power Reactor 1400MWe, Old name - KNGR ; Korean Next Generation Reactor) design, because the APR1400 is developed as a Standard Nuclear Power Plant concept enveloping suitable soil conditions. For the SSI analyses, SASSI program which adopts the Flexible Volume Method is used. In the SSI analyses, there can be uncertainties by Bond and De-bond problem between the structure and lateral soil elements. According to ASCE Standard 4, one method to address this concern is to assume no connectivity between structure and lateral soil over the upper half of the embedment of 20ft (6m), whichever is less. This study is performed as a part of the parametric analyses for the APR1400 seismic analyses to address the concern of the potential embedment effect on the in-structure response spectra due to connectivity between structure and lateral soil. In this study, 4 model cases are analyzed to check the potential embedment effect — Full connection, 20ft no connectivity which is defined as a minimum De-bond depth of the soil in ASCE Standard 4 and 26.5ft no connectivity between structure and lateral soil over the upper half of the embedment. Last one is full no connection for only reference. The in-structure response spectra are compared with the response spectra without considering the embedment effect.

Copyright © 2002 by ASME
Topics: Soil



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In