0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat and Mass Transfer and Two Phase Flow in Hydrogen Proton Exchange Membrane Fuel Cells and Direct Methanol Fuel Cells

[+] Author Affiliations
Hang Guo, Chong Fang Ma, Mao Hai Wang, Jian Yu, Xuan Liu, Fang Ye

Beijing University of Technology, Beijing, China

Chao Yang Wang

Pennsylvania State University, University Park, PA

Paper No. FUELCELL2003-1755, pp. 471-476; 6 pages
doi:10.1115/FUELCELL2003-1755
From:
  • ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology
  • 1st International Fuel Cell Science, Engineering and Technology Conference
  • Rochester, New York, USA, April 21–23, 2003
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-3668-1
  • Copyright © 2003 by ASME

abstract

Fuel cells are related to a number of scientific and engineering disciplines, which include electrochemistry, catalysis, membrane science and engineering, heat and mass transfer, thermodynamics and so on. Several thermophysical phenomena such as heat transfer, multicomponent transport and two phase flow play significant roles in hydrogen proton exchange membrane fuel cells and direct methanol fuel cells based on solid polymer electrolyte membrane. Some coupled thermophysical issues are bottleneck in process of scale-up of direct methanol fuel cells and hydrogen proton exchange membrane fuel cells. In present paper, experimental results of visualization of condensed water in fuel cell cathode microchannels are presented. The equivalent diameter of the rectangular channel is 0.8mm. Water droplets from the order of 0.08mm to 0.8mm were observed from several different locations in the channels. Several important problems, such as generation and change characteristics of water droplet and gas bubble, two phase flow under chemical reaction conditions, mass transfer enhancement of oxygen in the cathode porous media layer, heat transfer enhancement and high efficiency cooling system of proton exchange membrane fuel cells stack, etc., are discussed.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In