0

Full Content is available to subscribers

Subscribe/Learn More  >

Failure Pressure and Leak Rate of Steam Generator Tubes With Stress Corrosion Cracks

[+] Author Affiliations
S. Majumdar, K. Kasza, J. Y. Park, S. Bakhtiari

Argonne National Laboratory, Argonne, IL

Paper No. ICONE10-22582, pp. 361-366; 6 pages
doi:10.1115/ICONE10-22582
From:
  • 10th International Conference on Nuclear Engineering
  • 10th International Conference on Nuclear Engineering, Volume 1
  • Arlington, Virginia, USA, April 14–18, 2002
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-3595-2 | eISBN: 0-7918-3589-8
  • Copyright © 2002 by ASME

abstract

This paper illustrates the use of an “equivalent rectangular crack” approach to predict leak rates through laboratory generated stress corrosion cracks. A comparison between predicted and observed test data on rupture and leak rate from laboratory generated stress corrosion cracks are provided. Specimen flaws were sized by post-test fractography in addition to pre-test advanced eddy current technique. The test failure pressures and leak rates are shown to be closer to those predicted on the basis of fractography than on NDE. However, the predictions based on NDE results are encouraging, particularly because they have the potential to determine a more detailed geometry of ligamented cracks from which more accurate predictions of failure pressure and leak rate can be made in the future.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In