0

Full Content is available to subscribers

Subscribe/Learn More  >

NDE Performance (POD) Curves for Fatigue Cracks in Piping Based on Industry Performance Demonstration Data

[+] Author Affiliations
S. R. Gosselin, F. A. Simonen, P. G. Heasler, S. R. Doctor

Pacific Northwest National Laboratory, Richland, WA

F. L. Becker

Electric Power Research Institute, Charlotte, NC

Paper No. ICONE10-22418, pp. 293-303; 11 pages
doi:10.1115/ICONE10-22418
From:
  • 10th International Conference on Nuclear Engineering
  • 10th International Conference on Nuclear Engineering, Volume 1
  • Arlington, Virginia, USA, April 14–18, 2002
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-3595-2 | eISBN: 0-7918-3589-8
  • Copyright © 2002 by ASME

abstract

This paper evaluates non-destructive examination (NDE) detection capabilities of fatigue cracks in piping. Industry performance demonstration initiative (PDI) data for fatigue crack detection were used to develop a matrix of statistically based probability of detection (POD) curves that consider various NDE performance factors. Seven primary performance factors were identified — Material, Crack Geometry/Type, NDE Examination Access, NDE Procedure, Examiner Qualification, Pipe Diameter, and Pipe Wall Thickness. A database of 16,181 NDE performance observations, with 18 fields associated with each observation, was created and used to develop statistically based POD curves for 42 stainless steel and 14 carbon steel performance cases. Subsequent comparisons of the POD fits for each of the cases showed that excellent NDE performance for fatigue cracks can be expected for ferritic materials. Very little difference was observed between the POD curves for the 14 carbon steel performance cases considered in this study and NDE performance could therefore be represented by a single POD curve. For stainless steel, very good performance can also be expected for circumferential cracks located on the same side of the weld from which the NDE examination is made. POD depended primarily on component thickness. Three POD curves for stainless steel were prepared. Best estimate and the associated 95% confidence bounds POD verses through-wall depth logistic regression digital data are provided. Probabilistic fracture mechanics (PFM) calculations were performed to compare best estimate leak probabilities obtained from both the new performance-based POD curves and previous PFM models. This work was performed under joint funding by EPRI and the U.S. Department of Energy (DOE), Office of Nuclear Energy Science and Technology’s Nuclear Energy Plant Optimization (NEPO) program.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In