0

Full Content is available to subscribers

Subscribe/Learn More  >

Membraneless Fuel Cell Based on Laminar Flow

[+] Author Affiliations
Eric R. Choban, Piotr Waszczuk, Larry J. Markoski, Andrzej Wieckowski, Paul J. A. Kenis

University of Illinois at Urbana-Champaign, Urbana, IL

Paper No. FUELCELL2003-1728, pp. 261-265; 5 pages
doi:10.1115/FUELCELL2003-1728
From:
  • ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology
  • 1st International Fuel Cell Science, Engineering and Technology Conference
  • Rochester, New York, USA, April 21–23, 2003
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-3668-1
  • Copyright © 2003 by ASME

abstract

An increasing societal demand for a wide range of small, often portable devices that can operate for an extended period of time without recharging has resulted in a surge of research in micropower sources. Most efforts in this area focus on downscaling of existing fuel cell technology such as the well-known proton exchange membrane (PEM) fuel cells. Here we study a novel concept for fuel cells: the use of laminar flow instead of a physical barrier such as a PEM to separate the fuel and oxidant streams. Laminar flow, i.e. low Reynolds number flow, is a property of fluid flow at the microscale: one or more liquid streams that are brought together under low Reynolds number conditions flow in parallel and contact with each other without turbulent mixing. Mass transport transverse to the direction of flow takes place by diffusion only. In our laminar flow-based fuel cell a fuel-containing stream and an oxidant-containing stream are brought together in laminar flow conditions with the electrodes placed on opposite walls within the channel. In un-optimized fuel cell configurations, current densities as high as 10 mA/cm2 are obtained at room temperature using different fuels such as methanol or formic acid vs. oxygen saturated solvents or other oxidants.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In