0

Full Content is available to subscribers

Subscribe/Learn More  >

Advanced Hydrogen Fuel Systems for Fuel Cell Vehicles

[+] Author Affiliations
Andris R. Abele

QUANTUM Fuel Systems Technologies WorldWide, Inc., Irvine, CA

Paper No. FUELCELL2003-1703, pp. 83-87; 5 pages
doi:10.1115/FUELCELL2003-1703
From:
  • ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology
  • 1st International Fuel Cell Science, Engineering and Technology Conference
  • Rochester, New York, USA, April 21–23, 2003
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-3668-1
  • Copyright © 2003 by ASME

abstract

On-board storage and handling of hydrogen continues to be a major challenge on the road to the widespread commercialization of hydrogen fuel cell vehicles. QUANTUM Fuel Systems Technologies WorldWide, Inc. (QUANTUM) is developing a number of advanced technologies in response to the demand by its customers for compact, lightweight, safe, robust, and cost-effective hydrogen fuel systems. QUANTUM approaches hydrogen storage and handling as an engineered system integrated into the design of the vehicle. These engineered systems comprise advanced storage, regulation, metering, and electronic controls developed by QUANTUM. In 2001, QUANTUM validated, commercialized, and began production of lightweight compressed hydrogen storage systems. The first commercial products include storage technologies that achieved 7.5 to 8.5 percent hydrogen storage by weight at 350 bar (5,000 psi). QUANTUM has also received German TUV regulatory approval for its 700 bar (10,000-psi) TriShield10™ hydrogen storage cylinder, based on hydrogen standards developed by the European Integrated Hydrogen Project (EIHP). QUANTUM has patented an In-Tank Regulator for use with hydrogen and CNG, which have applications in both fuel cell and alternative fuel vehicle markets. To supplement the inherent safety features designed into the new 700 bar storage tank, QUANTUM’s patented 700 bar In-Tank Regulator provides additional safety by confining the high pressure in the tank and allowing only a maximum delivery pressure of 10 bar (150-psi) outside the storage system. This paper describes initial applications for these hydrogen fuel systems, which have included fuel cell automobiles, buses, and hydrogen refueling stations.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In