0

Full Content is available to subscribers

Subscribe/Learn More  >

Liquid Mixing in Static Micro Mixers With Various Cross Sections

[+] Author Affiliations
Norbert Kockmann, Michael Engler, Claus Föll, Peter Woias

Albert-Ludwigs-Universität Freiburg, Freiburg, Germany

Paper No. ICMM2003-1121, pp. 911-918; 8 pages
doi:10.1115/ICMM2003-1121
From:
  • ASME 2003 1st International Conference on Microchannels and Minichannels
  • 1st International Conference on Microchannels and Minichannels
  • Rochester, New York, USA, April 24–25, 2003
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-3667-3
  • Copyright © 2003 by ASME

abstract

Micro mixers are an integral part of several micro fluidic devices like micro reactors or analytical equipment. Due to the small dimensions, laminar flow is expected a priori in those devices while the mass transfer is supposed to be dominated by diffusion. A detailed numerical CFD-study by CFDRC-ACE+ of simple static mixers shows a significant deviation from strictly laminar flow in a wide range of Reynolds numbers Re, channel dimensions, and types of cross sections (square, rectangular, trapezoidal). With increasing flow velocity and Re number the flow starts to form vortexes at the entrance of the mixing channel. The vortexes are symmetrical to the symmetry planes of the mixing channel, both for the rectangular and the trapezoidal cross sections investigated here. With further increasing velocity the flow tends to instabilities, which causes a breakup of the flow symmetry. These instabilities are generally found in T-shape mixers with symmetrical flow conditions, but not always in Y-shape mixers or with asymmetrical flow conditions. Within the laminar flow regime diffusive mass transfer is dominant. In this case the mixing quality at constant channel length becomes worse with increasing velocity. This effect can almost be equalized by the onset of the vortex regime, which enhances the mass transfer by convective transport. This paper shows the mixing quality at a certain length for different geometrical parameters and flow conditions.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In