0

Full Content is available to subscribers

Subscribe/Learn More  >

The Influence of Finite Three Dimensional Multiple Axial Erosions on the Fatigue Life of Partially Autofrettaged Pressurized Cylinders

[+] Author Affiliations
C. Levy

Florida International University, Miami, FL

M. Perl

Ben Gurion University of the Negev, Beer Sheva, Israel

Q. Ma

Carnegie-Mellon University, Pittsburgh, PA

Paper No. PVP2002-1160, pp. 19-25; 7 pages
doi:10.1115/PVP2002-1160
From:
  • ASME 2002 Pressure Vessels and Piping Conference
  • High Pressure Technology
  • Vancouver, BC, Canada, August 5–9, 2002
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-1947-7
  • Copyright © 2002 by ASME

abstract

Erosion geometry effects on the mode I stress intensity factor (SIF) for a crack emanating from the farthest erosion’s deepest point in a finitely or fully multiply eroded, partially autofrettaged, pressurized, thick-walled cylinder is investigated. The problem is solved via the FEM method. Autofrettage, based on von Mises yield criterion, is simulated by thermal loading and SIFs are determined by the nodal displacement method. SIFs were evaluated for a variety of relative crack depths, a/t = 0.01 – 0.30 and crack ellipticities, a/c = 0.5 – 1.5 emanating from the tip of the erosion of various geometries, namely, a) semi-circular erosions of relative depths of 1–10% of the cylinder’s wall thickness, t; b) arc erosions for several dimensionless radii of curvature, r′/t = 0.05 – 0.3; and C) semi-elliptical erosions with ellipticities of d/h = 0.5 – 1.5. In the cases of finite erosions, the semi-erosion length to the semicrack length, Le /c, was between 2 and 10, erosion angular spacing, α, was between 7 and 120 degrees, whereas autofrettage effects investigated were for 30%, 60% and 100% autofrettage. The normalized SIFs and the normalized effective SIFs of a crack emanating from the farthest finite erosion are found to rise sharply for values of Le /c < 3. Both the normalized SIF and normalized effective SIF values are mitigated as the amount of partial autofrettage increases with the most rapid decrease occurring between 0–60% autofrettage. The purpose of this study is to detail these findings.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In