Full Content is available to subscribers

Subscribe/Learn More  >

Structural Properties and Ionic Conductivity of Ce0.8Gd0.2O2 and Ce0.8Sm0.2O2 Thin Films Grown by Pulsed Laser Deposition

[+] Author Affiliations
Boscope M. K. Sze, C. N. Wong, K. H. Wong

Hong Kong Polytechnic University, Hong Kong, China

Paper No. FUELCELL2005-74083, pp. 781-784; 4 pages
  • ASME 2005 3rd International Conference on Fuel Cell Science, Engineering and Technology
  • 3rd International Conference on Fuel Cell Science, Engineering and Technology
  • Ypsilanti, Michigan, USA, May 23–25, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-3764-5 | eISBN: 0-7918-3757-2
  • Copyright © 2005 by ASME


Thin films of Ce0.8 Gd0.2 O2 and Ce0.8 Sm0.2 O2 oxide electrolytes have been fabricated by pulsed laser deposition on (100)LaAlO3 substrates at temperature from 300 °C to 700 °C and under 100 mTorr oxygen ambient pressure. The crystal structure, crystallinity and lattice parameters of the as-deposited films are investigated by X-ray diffraction. High quality epitaxial and polycrystalline films are obtained at different growth conditions. We have made impedance measurements on these films in the temperature range from 300 °C to 850 °C. Our results reveal a mark increase in the ionic conductivity of these films in comparison with those of the corresponding bulk materials. The observed enhancements are closely related to the crystallinity of the films. Conductivities of 0.1 S/cm or higher for Ce0.8 Gd0.2 O2 and Ce0.8 Sm0.2 O2 are obtained at 500 °C. We have demonstrated that in utilizing these thin films solid oxide fuel cells operating at below 500 °C are possible.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In