Full Content is available to subscribers

Subscribe/Learn More  >

PEMFC Operation With Methanol Reforming Process

[+] Author Affiliations
Jong-Man Park, Hyun-Jong Kim, Yong-Gun Shul, Haksoo Han

Yonsei University, Seoul, Korea

Hasuck Kim

Seoul National University, Seoul, Korea

Dong Hyun Kim

Kyungpook National University, Taegu, Korea

Seung-Eul Yoo

Korea Automotive Technology Institute, Korea

Paper No. FUELCELL2005-74125, pp. 767-772; 6 pages
  • ASME 2005 3rd International Conference on Fuel Cell Science, Engineering and Technology
  • 3rd International Conference on Fuel Cell Science, Engineering and Technology
  • Ypsilanti, Michigan, USA, May 23–25, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-3764-5 | eISBN: 0-7918-3757-2
  • Copyright © 2005 by ASME


Most of studies for on-board hydrogen production for fuel cells are based on two types of carbon compounds. One is oxygen-containing compounds, methanol, ethanol and etc. The others are hydrocarbons such as ethers (dimethylether, etc), natural gas, propane gas, gasoline, jet fuel and diesel fuel. Automotive Polymer Electrolyte Membrane Fuel Cell (PEMFC) requires hydrogen gas to operate. The most convenient way to obtain the gas would be to use an on-board fuel processor to convert or reform commonly available liquid fuels, such as gasoline, methanol, and ethanol, into hydrogen. In this study, Methanol is used as hydrogen source which is also convenient for production, transportation and storage. PEMFC with methanol fuel process system, which is mainly composed of two parts, methanol reforming reaction and preferential oxidation (PROX), has been evaluated to study the enhancing stability of the system.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In