0

Full Content is available to subscribers

Subscribe/Learn More  >

Pressure Drop of Taylor Flow in Capillaries: Impact of Slug Length

[+] Author Affiliations
Michiel T. Kreutzer, Wei Wei, Freek Kapteijn, Jacob A. Moulijn

Delft University of Technology, Delft, The Netherlands

Johan J. Heiszwolf

Air Products and Chemicals, Inc., Allentown, PA

Paper No. ICMM2003-1064, pp. 519-526; 8 pages
doi:10.1115/ICMM2003-1064
From:
  • ASME 2003 1st International Conference on Microchannels and Minichannels
  • 1st International Conference on Microchannels and Minichannels
  • Rochester, New York, USA, April 24–25, 2003
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-3667-3
  • Copyright © 2003 by ASME

abstract

In a single capillary, the frictional two-phase pressure drop in Taylor flow has been measured using various liquids, and a correlation to predict the friction factor has been developed. A carefully designed inlet section for the capillary allowed the independent variation of gas bubble and liquid slug length. Gas and liquid superficial velocities were varied in the range 0.04–0.3 m/s. If the slug length was lower than 10 times the capillary diameter, the frictional pressure drop in the liquid slug increased drastically from the single phase limit (f = 16/Re). The slug length dependence is caused by a larger contribution to the pressure drop of the end effects near the bubble caps. Increased pressure drop at the ends of the slug is caused by two separate effects: (1) near the bubbles the circulation inside the liquid slug induces extra friction, and (2) the difference in curvature of the gas-liquid interface at the front and at the rear of the bubble gives rise to extra pressure drop. The use of different liquids allowed the independent variation of the Reynolds number Re and the Capillary number Ca, and an expression for the frictional pressure drop as a function of Re, Ca and the slug length was developed. The results of this work allow the determination of slug length from pressure drop measurements in closed equipment where the slug length cannot otherwise be measured easily. The applicability of the pressure drop model to estimate mass transfer is demonstrated by combined pressure drop and gasliquid measurements in a monolith, which is essentially an array of capillary channels.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In