0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Liquid Properties on Pressure Drop of Two-Phase Gas-Liquid Flows Through a Microchannel

[+] Author Affiliations
Akimaro Kawahara, Michio Sadatomi, Kazuya Okayama

Kumamoto University, Kumamoto, Kumamoto, Japan

Masahiro Kawaji

University of Toronto, Toronto, ON, Canada

Paper No. ICMM2003-1058, pp. 479-486; 8 pages
doi:10.1115/ICMM2003-1058
From:
  • ASME 2003 1st International Conference on Microchannels and Minichannels
  • 1st International Conference on Microchannels and Minichannels
  • Rochester, New York, USA, April 24–25, 2003
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-3667-3
  • Copyright © 2003 by ASME

abstract

Adiabatic experiments were conducted to measure pressure drop for single-phase liquid and gas-liquid two-phase flows through a circular microchannel with an internal diameter of 100 μm. In order to study the effects of liquid properties on the pressure drop, aqueous solutions of ethanol with different mass concentrations (4.8, 9.5, 49 and 100 wt%) in distilled water and distilled water were used as the working liquid, while nitrogen gas was used for the gas phase. The surface tension of the working liquid ranged from 0.023 N/m (100 wt% ethanol) to 0.072 N/m (water), and viscosity from 0.9 mPa·s (water) to 3.4 mPa·s (49 wt% ethanol aqueous solution). For the single-phase flow experiments, the friction factor data were obtained for each working liquid used, over a Reynolds number range of 2 < Re < 800. For the two-phase flow experiments, pressure drop data were collected over 0.2 < jG < 7 m/s for the superficial gas velocity and 0.1 < jL < 1 m/s for the superficial liquid velocity. For single-phase flows, friction factor data were shown to be in reasonable agreement with conventional theory. Furthermore, early transition from laminar to turbulent flow was not observed over the present experimental flow conditions. For two-phase flows, Lockhart & Martinelli’s correlation was found to be capable of predicting the present pressure drop data irrespective of the working liquid tested, if an appropriate constant needed in the correlation is adopted.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In