Full Content is available to subscribers

Subscribe/Learn More  >

PEM Fuel Cell Research Direction for Automotive Application

[+] Author Affiliations
John Fagley, Jason Conley, David Masten

General Motors Corporation, Honeoye Falls, NY

Paper No. FUELCELL2005-74052, pp. 613-617; 5 pages
  • ASME 2005 3rd International Conference on Fuel Cell Science, Engineering and Technology
  • 3rd International Conference on Fuel Cell Science, Engineering and Technology
  • Ypsilanti, Michigan, USA, May 23–25, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-3764-5 | eISBN: 0-7918-3757-2
  • Copyright © 2005 by ASME


In recent years, there has been an increasing amount of PEM (proton exchange membrane) fuel cell-related research conducted and subsequently published by universities and public institutions. While a good deal of this research has been useful for understanding the underlying fundamental aspects of fuel cell components and operation, much of it is not as useful for a group working on automotive applications as it could be. The reason for this is that in order to be put to practical use in an automotive application, the system being studied must meet certain constraints; satisfying targets for projected system costs, system efficiency, volumetric and gravimetric power densities (packaging), and operating conditions. For example, numerous recent publications show studies with PEM fuel cells designed and built such that limiting current density is achieved at 0.9 A/cm2 or lower, and voltages of 600 mV can only be achieved at current densities less than 0.6 A/cm2. This type of performance is sufficiently below what is required for commercial application, that any conclusions drawn from these works are difficult to extrapolate to a system of commercial automotive interest. The purpose of this article is to show, through use of engineering calculations and cost projections, what operating conditions and performance are required in a commercial automotive fuel cell application. In addition, best known (public domain) performance and corresponding conditions are given, along with Department of Energy Freedom Car targets, which can be used for state-of-the-art benchmarking. Also, reference is made to a university publication where performance (500 mV at 1.5 A/cm2) close to automotive application targets was achieved, and important aspects of their components and flow field geometry are highlighted. It is our hope that through this publication, further PEM fuel-cell related research can be directed toward the region of greatest interest for commercial, automotive application.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In