Full Content is available to subscribers

Subscribe/Learn More  >

The Thermocapillary Convection in Locally Heated Laminar Liquid Film Flow Caused by a Co-Current Gas Flow in Narrow Channel

[+] Author Affiliations
E. Y. Gatapova, Y. V. Lyulin, I. V. Marchuk, O. A. Kabov

Russian Academy of Sciences, Novosibirsk, Russia

J.-C. Legros

Universite Libre de Bruxelles, Brussels, Belgium

Paper No. ICMM2003-1055, pp. 457-464; 8 pages
  • ASME 2003 1st International Conference on Microchannels and Minichannels
  • 1st International Conference on Microchannels and Minichannels
  • Rochester, New York, USA, April 24–25, 2003
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-3667-3
  • Copyright © 2003 by ASME


A two-dimensional model of a steady laminar flow of liquid film and co-current gas flow in a plane channel is considered. It is supposed that the height of a channel is much less than its width. There is a local heat source on the bottom wall of the channel. An analytical solution for the temperature distribution problem in locally heated liquid film is obtained, when the velocity profile is linear. An analytical solution of the linearized equation for thermocapillary film surface deformation is found. A liquid bump caused by the thermocapillary effect in the region where thermal boundary layer reaches the film surface is obtained. Damped oscillations of the free surface may exist before the bump. This is obtained according to the solution of the problem in an inclined channel. It depends on the forces balance in the film. The defining criterion is found for this effect. The oscillations of free surface do not exist for horizontally located channel.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In