Full Content is available to subscribers

Subscribe/Learn More  >

An Improved Design of Microchannel Fuel Processors

[+] Author Affiliations
Hye-Mi Jung

Hankuk Aviation University, Gyeonggi-Do, Korea

Sung-Dae Yim, Sukkee Um, Young-Gi Yoon, Gu-Gon Park, Young-Jun Sohn, Tae-Hyun Yang, Won-Yong Lee, Chang-Soo Kim

Korea Institute of Energy Research, Daejeon, Korea

Paper No. FUELCELL2005-74060, pp. 537-547; 11 pages
  • ASME 2005 3rd International Conference on Fuel Cell Science, Engineering and Technology
  • 3rd International Conference on Fuel Cell Science, Engineering and Technology
  • Ypsilanti, Michigan, USA, May 23–25, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-3764-5 | eISBN: 0-7918-3757-2
  • Copyright © 2005 by ASME


This paper focuses on a new systematic configuration of micro-channel fuel processors, particularly designed for portable applications. An alternative integration method of the micro-channel fuel processors is attempted to overcome the serious thermal unbalance and to minimize the system volume by introducing the direct contact method of the sub-components. An integrated micro-channel methanol processor was developed by assembling unit reactors, which were fabricated by stacking and bounding micro-channel patterned stainless steel plates, including fuel vaporizer, catalytic combustor and steam reformer. Commercially available Cu/ZnO/Al2 O3 catalyst (ICI Synetix 33-5) was coated inside micro-channel of the unit reactor for steam reforming. The steam reforming reaction was conducted in the temperature range of 200°C to 260°C in the basis of reformer side end-plate and the temperature was controlled by varying methanol feeding into the combustor. More than 99% of methanol was converted at 240°C of reformer side temperature. A mechanism-based numerical model aimed at enhancing physical understanding and optimizing designs has been developed for improved micro-channel fuel processors. A two-dimensional numerical model in the reformer section created to model the phenomena of species transport and reaction occurring at the catalyst surface. The mass, momentum, and species equations were employed with kinetic equations that describe the chemical reaction characteristics to solve flow-field, methanol conversion rate, and species concentration variations along the micro-channel. This mechanism-based model was validated against the experimental data from the literature and then applied to various layouts of the micro-channel fuel processors targeted for the optimal catalyst loading and fuel reforming purpose. The computer-aided models developed in this study can be greatly utilized for the design of advanced fast-paced micro-channel fuel processors research.

Copyright © 2005 by ASME
Topics: Fuels , Design , Microchannels



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In