0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of a Methane Fuelled Direct Carbon Fuel Cell System

[+] Author Affiliations
K. Hemmes, M. Houwing, N. Woudstra

Delft University of Technology, Delft, The Netherlands

Paper No. FUELCELL2005-74175, pp. 515-521; 7 pages
doi:10.1115/FUELCELL2005-74175
From:
  • ASME 2005 3rd International Conference on Fuel Cell Science, Engineering and Technology
  • 3rd International Conference on Fuel Cell Science, Engineering and Technology
  • Ypsilanti, Michigan, USA, May 23–25, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-3764-5 | eISBN: 0-7918-3757-2
  • Copyright © 2005 by ASME

abstract

Direct Carbon Fuel Cells (DCFCs) have great thermodynamic advantages over other high temperature fuel cells such as MCFC and SOFC. They can have 100% fuel utilization, no Nernst loss (at the anode) and the CO2 produced at the anode is not mixed with other gases and is ready for reuse or sequestration. So far only studies have been reported on cell development. In this paper we study in particular the integration of the production of clean and reactive carbon particles from methane as a fuel for the direct carbon fuel cell. In the thermal decomposition process heat is upgraded to chemical energy in the carbon and hydrogen produced. The hydrogen is seen as a product as well as the power and heat. Under the assumptions given the net system electric efficiency is 22.9 % (based on methane LHV) and 20.7 % (HHV). The hydrogen production efficiency is 65.5 % (based on methane LHV) and 59.1 % (HHV), which leads to a total system efficiency of 88.4 % (LHV) and 79.8 % (HHV). Although a pure CO2 stream is produced at the anode outlet, which is seen as a large advantage of DCFC systems, this advantage is unfortunately reduced due to the need for CO2 in the cathode air stream. Due to the applied assumed constraint that the cathode outlet stream should at least contain 4% CO2 for a proper functioning of the cathode, similar to MCFC cathodes a major part of the pure CO2 has to be mixed with incoming air. Further optimization of the DCFC and the system is needed to obtain a larger fraction of the output streams as pure CO2 for sequestration or reuse.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In