0

Full Content is available to subscribers

Subscribe/Learn More  >

Fuel Cell Power Conditioner for Stationary Power System: Towards Optimal Design From Reliability, Efficiency, and Cost Standpoint

[+] Author Affiliations
Sudip K. Mazumder, Rajni K. Burra

University of Illinois at Chicago, Chicago, IL

Paper No. FUELCELL2005-74178, pp. 483-497; 15 pages
doi:10.1115/FUELCELL2005-74178
From:
  • ASME 2005 3rd International Conference on Fuel Cell Science, Engineering and Technology
  • 3rd International Conference on Fuel Cell Science, Engineering and Technology
  • Ypsilanti, Michigan, USA, May 23–25, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-3764-5 | eISBN: 0-7918-3757-2
  • Copyright © 2005 by ASME

abstract

We describe an energy-efficient, fuel cell (FC) powerconditioning system (PCS) for stationary application, which draws practically zero switching-ripple current from the FC and can potentially meet the $40/kW cost target. The PCS consists of a zero-ripple boost converter (ZRBC) followed by a soft-switched and multi-level high-frequency (HF) inverter and a single-phase cycloconverter. The zero-ripple input inductor significantly reduces the input current ripple which may be necessary to enhance the long-term durability of the fuel cell. A new phase-shifted sine-wave modulation of the multi-level high frequency inverter is proposed which results in the zero voltage turn-on (ZVS) of all four switches (without the use of any auxiliary circuit components). For such a sine-wave modulation technique a > 90 % ZVS range is obtained from 25% of the full load to full load. Further, the line-frequency switching of the cycloconverter (at close to unity power factor) results in extremely low switching losses. The intermediate high voltage DC (HVDC) bus facilitates the inclusion of power systems based on other forms of alternative-energy techniques. A cost effective 1 kW prototype of the proposed PCS is built, which achieved a high overall efficiency. We present a detailed description of the operation of the PCS along with its key features and advantages. Finally, experimental results showing the performance and operation of the PCS are demonstrated.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In