Full Content is available to subscribers

Subscribe/Learn More  >

Analysis, Modeling, and Validation for the Thermal Dynamics of a Polymer Electrolyte Membrane Fuel Cell System

[+] Author Affiliations
Eric A. Müller

Swiss Federal Institute of Technology Zurich (ETH), Zurich, Switzerland

Anna G. Stefanopoulou

University of Michigan, Ann Arbor, MI

Paper No. FUELCELL2005-74050, pp. 389-404; 16 pages
  • ASME 2005 3rd International Conference on Fuel Cell Science, Engineering and Technology
  • 3rd International Conference on Fuel Cell Science, Engineering and Technology
  • Ypsilanti, Michigan, USA, May 23–25, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-3764-5 | eISBN: 0-7918-3757-2
  • Copyright © 2005 by ASME


A control-oriented mathematical model of a polymer electrolyte membrane (PEM) fuel cell stack is developed and experimentally verified. The model predicts the bulk fuel cell transient temperature and voltage as a function of the current drawn and the inlet coolant conditions. The model enables thermal control synthesis and optimization and can be used for estimating the system performance. Unlike other existing thermal models, it includes the gas supply system, which is assumed to be capable of controlling perfectly the excess air and hydrogen ratio. The fuel cell voltage is calculated quasi-statically. Measurement data of a 1.25 kW, 24-cell fuel cell stack with an integrated membrane-type humidification section is used to identify the system parameters and to validate the performance of the simulation model. The predicted thermal response is verified during typical variations in load, coolant flow, and coolant temperature. A first-law control volume analysis is performed to separate the relevant from the negligible contributions to the thermal dynamics and to determine the sensitivity of the energy balance to sensor errors and system parameter deviations.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In