0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of High Performance Micro DMFCs and a DMFC Stack

[+] Author Affiliations
Guoqiang Lu, Chao-Yang Wang

Pennsylvania State University, University Park, PA

Paper No. FUELCELL2005-74090, pp. 373-379; 7 pages
doi:10.1115/FUELCELL2005-74090
From:
  • ASME 2005 3rd International Conference on Fuel Cell Science, Engineering and Technology
  • 3rd International Conference on Fuel Cell Science, Engineering and Technology
  • Ypsilanti, Michigan, USA, May 23–25, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-3764-5 | eISBN: 0-7918-3757-2
  • Copyright © 2005 by ASME

abstract

A silicon-based micro direct methanol fuel cell (μDMFC) for portable applications has been fabricated and its electrochemical characterization carried out. A membrane-electrode assembly (MEA) was specially fabricated to mitigate methanol crossover. The cell with the active area of 1.625 cm2 demonstrated a maximum power density of 50 mW/cm2 at 60°C. Since silicon wafer is too fragile to compress for sealing, and a thicker layer of gold has to be coated on the silicon wafer to reduce contact resistance, further development of micro DMFCs for high power application was carried out using stainless steel plate as bipolar plate in which flow channels were fabricated by photochemical etching technology. The maximum power density of the micro DMFC reaches 62.5 mW/cm2 at 40 °C and 100 mW/cm2 at 60°C with atmospheric pressure. An 8-cell air-breathing DMFC stack has been developed. Mass transport phenomena such as water transport, and oxygen transport were investigated. By using a water management technique, cathode flooding was avoided in our air-breathing DMFC stack. Furthermore, it was found that oxygen transport in the air-breathing cathode is still very efficient. The DMFC stack produced a maximum output power of 1.33 W at 2.21 V at room temperature, corresponding to a power density of 33.3 mW/cm2 . A passive DMFC using pure methanol was demonstrated with steady-state output power of 20–25 mW/cm2 over more than 10 hours without heat management.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In