Full Content is available to subscribers

Subscribe/Learn More  >

Gaseous Slip Flow in a Micro-Channel

[+] Author Affiliations
Shou-Shing Hsieh, Huang-Hsiu Tsai, Chih-Yi Lin, Ching-Fang Huang, Cheng-Ming Chien

National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C.

Paper No. ICMM2003-1033, pp. 299-306; 8 pages
  • ASME 2003 1st International Conference on Microchannels and Minichannels
  • 1st International Conference on Microchannels and Minichannels
  • Rochester, New York, USA, April 24–25, 2003
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-3667-3
  • Copyright © 2003 by ASME


An experimental and theoretical study of low Reynolds number compressible gas flow in a micro channel is presented. Nitrogen gas was used. The channel was microfabricated on silicon wafers and were 50 μm deep, 200 μm wide and 24000 μm long. The Knudsen number ranged from 0.001 to 0.02. Pressure drop were measured at different mass flow rates in terms of Re and found in good agreement with those predicted by analytical solutions in which a 2-D continuous flow model with first slip boundary conditions are employed and solved by perturbation methods.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In