Full Content is available to subscribers

Subscribe/Learn More  >

Viscoelastic Stress Model and Mechanical Characterization of Perfluorosulfonic Acid (PFSA) Polymer Electrolyte Membranes

[+] Author Affiliations
Yeh-Hung Lai, Craig S. Gittleman

General Motors Corporation, Honeoye Falls, NY

Cortney K. Mittelsteadt

Giner Electrochemical Systems, LLC, Newton, MA

David A. Dillard

Virginia Polytechnic Institute and State University, Blacksburg, VA

Paper No. FUELCELL2005-74120, pp. 161-167; 7 pages
  • ASME 2005 3rd International Conference on Fuel Cell Science, Engineering and Technology
  • 3rd International Conference on Fuel Cell Science, Engineering and Technology
  • Ypsilanti, Michigan, USA, May 23–25, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-3764-5 | eISBN: 0-7918-3757-2
  • Copyright © 2005 by ASME


Many of the premature failures in the PEM fuel cells are attributed to crossover of the reactant gas from pinholes or through-the-thickness flaws in the membranes. The formation of these pinholes is not fully understood, although mechanical stress is often considered one of the major factors in their initiation and/or propagation. This paper reports evidence of pinhole failure from mechanical stress by cycling between wet and dry conditions in a normally built single 50cm2 fuel cell. In an effort to understand the source of the mechanical stress, to quantify the magnitude, and to correlate its role in membrane failure, a membrane stress model based on linear viscoelastic theory was developed. The effects of temperature, water content, and time are accounted for in the membrane stress model. To satisfy the inputs for the membrane model and to characterize the mechanical behavior of the polymer electrolyte membrane, a series of experiments was performed. Using commercially available Nafion® NR111 membrane as a model material, swelling of 15% and shrinkage of 4% were found from a hydration and de-hydration cycle. Data on elastic moduli versus relative humidity showed discontinuity at the vapor and liquid water transition. We also found that creep compliance master curves can be obtained by double-shifting the compliance curves according to the time-temperature-moisture superposition principle, which significantly simplifies the modeling effort. Combining data on hygro-expansion, elastic moduli, and creep compliance data through the membrane stress model, it was found that the de-hydration process induces significant stress in the membrane. Due to fluctuations in fuel cell operating conditions, the membrane and the associated components are subject to mechanical fatigue which may mechanically degrade the membrane of PEM fuel cells and eventually lead to pinhole formation.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In