Full Content is available to subscribers

Subscribe/Learn More  >

Computation of Dehydration Effects of the Membrane in a PEM Fuel Cell

[+] Author Affiliations
Yuyao Shan, Song-Yul Choe

Auburn University, Auburn, AL

Paper No. FUELCELL2005-74163, pp. 79-86; 8 pages
  • ASME 2005 3rd International Conference on Fuel Cell Science, Engineering and Technology
  • 3rd International Conference on Fuel Cell Science, Engineering and Technology
  • Ypsilanti, Michigan, USA, May 23–25, 2005
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-3764-5 | eISBN: 0-7918-3757-2
  • Copyright © 2005 by ASME


The water management is one of crucial issues to secure a safe and reliable operation of a fuel cell system. Particularly, water flooding blocks influx of reactants in the porous materials or a lack of water in membrane may lead to decrease proton conductivity. Computational methodologies using 3D CFD are employed to conduct analyses. However, the exponentially increasing computational time and the complexity of the validation process necessary for the models are impeding further dynamic study. On the other hand, most of the current models used for the analysis are based on the empirical polarization curve, which does not include the phenomena of water dehydration. We developed a dynamic quasi-1D model for a membrane layer appropriate for an analysis of the dehydration, which considers two aspects: (1) water removed by the outlet gases at the two electrodes; (2) water transported by diffusion and electro-osmotic forces in the membrane. Simulations have been conducted to analyze the effects of load currents and anode/cathode inlet pressure as well as flow rates on the dynamic variation of water content in the membrane and derive impacts on the behavior of the whole PEM fuel cell system.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In